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Abstract—Fault discovery in the complex 

systems consist of model based reasoning, fault 

tree analysis, rule based inference methods, and 

other approaches.  Model based reasoning builds 

models for the systems either by mathematic 

formulations or by results of experiments. Fault 

Tree Analysis shows the possible causes of a 

system malfunction by enumerating the suspect 

components and their respective failure modes 

that may have induced the problem. The rule 

based inference build the model based on the 

expert knowledge. Those models and methods 

have one thing in common; they have presumed 

some prior-conditions. Complex systems often 

use fault trees to analyze the faults. Fault 

diagnosis, when an error occurs, is performed by 

engineers and analysts performing extensive 

examination of all data gathered during the 

mission. International Space Station (ISS) 

control center operates on the data feedback from 

the system and decisions are made based on 

threshold values by using fault trees. Since those 

decision-making tasks are safety critical and 

must be done promptly, the engineers who 

manually analyze the data are facing the 

challenge of time limit. To automate this 

process, this paper presents an approach that uses 

decision trees to discover faults from data in 

real-time and capture the contents of fault trees 

as the initial state of the trees.  

 

1. INTRODUCTION 

Decision trees (also called classification trees) 

are the binary trees built from data samples and 

can classify the objects into different classes. In 

our case, the decision trees can classify different 

fault events or normal events. Given a set of data 

samples, decision trees can be built and trained, 

and then by running the new data through the 

trees, classification and prediction can be made. 

In this way, diagnostic knowledge for fault 

detection and isolation can be represented as 

diagnostic rules; we call this tree the diagnostic 

decision tree(DDT).  By showing the fault path 

in decision trees, we also can point out the root 

cause when a fault occurs. Since all the 

procedures and algorithms are available to build 

decision trees, the trees built are cost effective 

and time effective. Because the diagnostic 

decision trees are based on available data and 

previous knowledge of subsystem logic, the 

DDT can also be trained to predict faults and 

detect unknown faults. Based on this, the needs 

for on-board real time diagnostics can readily be 

met. Diagnostic Decision Trees are built based 

on the fault trees as static trees that serve as the 

fundamental diagnostic trees, and the dynamic 

DDTs are built over time from vehicle telemetry 

data. The dynamic DDT will add the 

functionalities of prediction, and will be able to 

detect unknown faults. Crew or maintenance 

engineers can use the decision tree system 

without having previous knowledge or 

experience about the diagnosed system. To our 

knowledge, this is the first paper to propose a 

solution to build diagnostics decision trees from 

fault trees, which convert the reliability analysis 

models to diagnostic models.  We show through 

mapping and ISS examples that the approach is 

feasible and effective. We also present future 

work and development. 

 

Detecting faults in a complex system requires 

complex diagnostic tools. Fault tree is one of 

those tools to be used for analyzing and 

diagnostic fault. The fault tree concept was 

introduced by Bell Telephone Laboratories in 

1962 for the U.S. Air Force for use with the 

Minuteman system [8]. It was later adopted and 

extensively applied by the Boeing Company and 

is one of the most widely used methods in 

system reliability analysis for a long time [4].  It 

is a deductive procedure for determining the 



various combinations of hardware and software 

failures and human errors that could result in the 

occurrence of specified undesired events 

(referred to as top events) at the system level. As 

part of the analysis, the minimal cut sets of a 

fault tree can be determined [3], and then fault 

trees can be built. Individual fault trees can be 

visualized and drawn. Fault trees are usually 

individually built for each part of the system for 

each top event. It is very difficult to have generic 

software to traverse fault trees. On the other 

hand, the decision trees are matured data 

structures and it is very easy to be manipulated 

in a software program. Using decision trees to 

represent fault trees will increase the operability 

and decrease response time for system 

diagnostics, and furthermore, will make it easier 

for users  to visualize the root cause of the fault 

and path from which the fault came. The high 

availability of many different tree algorithm 

implementations in the computer science field 

makes using decision tree to manage the fault 

trees one of best approaches. In this paper, we 

present a method to convert existing fault trees to 

decision trees. More general ways of 

constructing decision trees are presented.  The 

method is easy to program and run on a 

computer since the decision tree algorithms have 

many available implementations [5].  This 

method also provides a good tool for researchers 

on simulation and prediction tasks.  By using this 

method, one can analyze data samples from the 

past and categorized them into different classes; 

abnormal, normal, and fault events in such a way 

that future faults can be predicted from the past.  

This could be a data mining components with 

run time updating processes.  Such an artificial 

intelligent application is presented in the paper as 

a form of framework architecture.   

2. DETECTING FAULTS FROM DATA 

Using decision trees, we can detect fault from 

data by monitoring the data values and compare 

to the fault patterns. When we do not have the 

fault patterns at beginning of the system, we 

need to set up initial trees with results of fault 

analysis of static system. Usually we can start 

with fault trees. Then we migrate the fault trees 

to decision trees. We also can build decision 

trees from events and telemetry data during run 

time when real data is coming in. The decision 

trees converted from fault trees can be used as 

diagnostic tools. When fault occurs, we can 

recognize the fault by running telemetry data 

through the trees and finding out where the data 

stops. Also, the type of fault can be categorized 

and its path can be determined by such trees. 

Other applications are also possible by utilizing 

decision trees. Once we know that the decision 

tree is very well suited for data mining tasks, we 

can apply our trees to a data mining framework 

targeting at recognizing fault patterns and do 

early fault detection and prediction. Data mining 

is the process of analyzing data from different 

perspectives and summarizing it into useful 

information. It allows users to analyze data from 

many different dimensions or angles, categorize 

it, and summarize the relationships identified. In 

our case, it is the process of finding fault 

patterns. A design model, also we can call it a 

framework model, is presented in Figure 1. In 

the figure, we can see how the hybrid decision 

trees, in this case it a kind of fault decision tree, 

fit into the knowledge discovery part of the data 

mining process [7]. Initially, the trees are built 

for known fault. For example, the initial trees 

converted from fault trees. Then we have 

decision trees built from  real time data while the 

system is running. While we know the fault trees 

could not be developed run time and could not 

be used in such application, the decision trees are 

so easy to be fit into such an application. We can 

build such a tree that records fault patterns each 

time a fault event occurs. Essentially, we record 

the fault trends patterns so we can use such trees 

to recognize a fault in its early stages. 
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Figure 1 Decision trees in fault 

discovery application 



3. CONVERSION METHOD 

There are some other attempts to represent fault 

trees by other forms; one of them is building 

diagnostic maps from fault trees [2]. Decision 

trees are trees usually built from data. Let’s look 

at a fault tree and see how can we map it to the 

decision tree. Take a sample fault tree in the 

form of following: 
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Figure 2 Over Voltage Event Fault Tree 
 

We have 6 inputs to the tree. The inputs remain 

the same for the decision tree. The corresponding 

decision tree should have the same functionality 

in terms of sample inputs and fault triggers. In 

the other words, the same inputs to the fault tree, 

or to the decision tree will have the same result. 

The corresponding tree can be built as in Figure 

3. If by applying the telemetry data one can 

propagate all the way to terminal node 6, we 

know that the system is at an over voltage fault. 

The decision tree not only provides the final 

result if the system is at fault status, it can also 

provides the interim status by looking at where 

the sample data end up. To ease the decision tree 

generation and notation, we give the signals 

short names as follows: 

 
Consecutive readings = ct; Voltage A over trip 

point 129 = Ua; Validity UaA = UdA; Reconfig 

deactive = Config; Voltage B = Ub; Validate Ub 

= UdB. 
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Figure 3 Decision Tree for Over Voltage 

 
To show a more common case that includes an 

OR gate in the fault tree, another example is 

shown below: 
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Figure 4 GNC Fail Event Fault Tree 

 
Similarly, we represent the signals n short 

notations. Frame count = Fc; Fail to change in 4 

seconds = Fc4; GNC enabled = GNCe; SM loss 

conn = Smloss; 3 second = SM3. In this case, 



more balanced data inputs will end up with more 

evenly distributed decision trees. In the same 

way as we showed earlier, the corresponding 

decision tree is presented as follows: 
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Figure 5 Decision Tree for GNC Fail 

 
We had demonstrated that fault trees can be 

mapped to decision trees with examples of the 

over voltage and GNC fail fault trees. The 

convenience use of decision tree use is that the 

available decision tree software programs can 

easily pin point a root cause of an event ( 

including fault event) by recording the edges in 

the path of the tree when giving reports and 

evaluation of the system status. For more general 

purposes and for ease of illustration, we can 

abstract the information into a map and construct 

a decision tree from this map. The map basically 

represents the different events, including fault 

events, in the n dimension space. When we deal 

with decision trees, we call the events classes. 

The class could be fault, nominal, or warning etc. 

This demonstration shows that the decision tree 

not only can be derived from the fault tree but 

also can be constructed from data samples, 

which is very useful in real time fault detection 

and prediction. 
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Figure 6 Class distributions 

 
To map to the decision tree, we use an example 

to explain it. We assume faults in the two 

dimension space for simplification of 

visualization. Multiple dimensions will follow 

the same rules. In Figure 5, we give an example 

of the fault scenarios, the triangles represent 

normal, called Class 1 and squares represent 

faults, called Class 2. We will use cumulative 

distribution function (cdf) for tree construction. 

The cdf is the probability that the variable takes a 

value less than or equal to x. That is 

 

 (1) 

 

This can be expressed mathematically for 

continuous distribution: 

  (2) 

 

For a discrete distribution, the cdf can be 

expressed as 

 

  (3) 

 

When we construct a decision tree, we have a 

root, then we have two branches, further, each of 

those branches can, have a maximum of two 

branches, until no further branches can be 

constructed and we reach the bottom of the tree 

and we are done. Those procedures could be said 

in another way; we are splitting the data until it 

couldn’t be split any more. So what we need is 



information on where to split, and when do we 

stop splitting. With the method of accumulated 

distribution function, we construct the trees 

using the following steps. First, calculate the cdf 

for each class. Second, compare the result for 

each class at all the points. Third, the largest 

value will be picked and the maximum value 

of x will be the split point. Repeat first to third 

step until no more points to split remain. In the 

example, we calculate the cdf for each class as a 

function of each attribute (see Figure 5), and then 

pick the split point where the difference of the 

two cdf values is maximum.   

 

 

 

 

 

 

 

 

 

Figure 7  Calculate split point by using 

cdf.(1) 

 
We repeatedly split until all samples in a node 

are of the same class.  In Figure 6, the horizontal 

axis is the possible split points iS  51 <=< i  

corresponding to the x-axis in Figure 6, and the 

vertical axis is the value of the cdf for each class.  

In Figure 6 1f  is the cdf value for class 1 

(cylinders) and 2f  is the cdf value for class 2 

(cubes).   

In Figue 6, the vertical axis is the possible split 

points.  iS 105 <=< i corresponding to the y-

axis in Figure 6, and the horizontal axis is the 

value of the cdf for each class.  In Figure 6 1f  is 

the cdf value for class 1 (cylinders) and 2f  is the 

cdf value for class 2 (cubes).  The purpose is to 

find the point where the distance between 1f  

and 2f  is the maximum.  To calculate the cdf, 

we used the estimated function ii Nn / .  The 

total number of samples in class 1 is 6, and in 

class 2 is 4.  1N  = 6 and 2N  = 4.  As shown in 

Figure 5 at split point 1S  , we have the f1 value 

of  1/6, and 2f  value of  0.  At split point 2S  we 

have the 1f  value of  2/6, and a f2 value of  1/4.  

At split point 3S  we have the 1f  value no 

change, still  2/6 or 1/3, and a 2f  value of  2/4 or 

1/2.  At split point S4 we have the 1f  value of 

1/2 and a 2f  value of 3/4.  At split point 5S  we 

have the 1f  value of  5/6 and a 2f  value of no 

change, 3/4.  

Similarly in Figure 8 at split 6S  the value of 1f  

is 1/6 and 2f  is 0.   At split point 7S  we  
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Figure 8 Calculate Split Point Using cdf (2) 

 

have the 1f  value of  3/6, and a f2 value of  0.  

With the same calculations, at split point 8S  we 

have the 1f  value of  4/6 and a f2 value of  0.  

Again, at split point 9S  we have the 1f  value of 

5/6 and a 2f  value of 1/4.  At split point 10S , 

we have the 1f  value of  1 and a 2f  value of  

2/4.   

 

From Figures 7 and 8, we can see that the split S8 

has the maximum distance (4/6) between 1f  and 

2f  among all others.  Therefore, we pick the 

first split point as 8S .  After we split the set on 

8S , we have two subsets, one of the subsets has 

only class 1 in it, and so we don’t need to do the 

further split on this subset.  But on the other 

subset, we will repeat the same calculations on 

the remaining samples to find the further split 

points. The procedures to calculate the cdf and 
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select the maximum distance between 1f  and 

2f are the same as above. The constructed tree is 

shown in Figure 9.  
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Figure 9 Final Decision Tree 

 

When the real time data comes in, we let them 

propagate through the decision tree that we 

constructed. The faults are detected and 

classified  when the data samples fall into a fault 

class at the terminal node. To illustrate how the 

fault happened, we can show the fault mode by 

tracking the path that the data went through.  

Visualization of the path with a distinctive color 

or shape will show the user the clear cause of the 

fault. 

 

This method not only can apply to the 

conversion of the fault trees to decision trees, it 

can also construct decision trees from data 

samples at run time during operation of ISS over 

time. By simply selecting a set of data samples 

from time to time, we can build decision trees 

dynamically. In later time, the built decision 

trees can be used to compare the new data to the 

old data and to predict future faults. The best use 

of such trees is to build trees by applying 

grouped fault scenarios and then applying real 

time data to the tree to compare the pattern to 

know fault patterns,  faults can be detected when 

a pattern is matched. 

 

4. CONCLUSION 

We started from ISS fault tree examples to 

migrate to decision trees by presenting a method 

for converting fault trees to decision trees. The 

method shows that the visualization of root cause 

of faults is easier and that tree manipulation 

becomes more programmatic via available 

decision tree programs. The visualization of 

decision trees for diagnostics shows a format that 

is straightforward and easy to understand. For 

ISS real time fault diagnostics, the status of the 

systems could be shown by running the signals 

through the trees and watching where it stops. 

The other advantage to using decision trees is 

that the trees can learn the fault patterns and 

predict  future faults from the historic data. The 

learning is done not only on the static data sets 

but also can be done at runtime; through 

accumulating the real time data sets, the decision 

trees can gain and store faults patterns in the 

trees and recognize them when they reoccur.  

The decision tree plays the role in knowledge 

discovery while the fault tree could not. 

5. FUTURE DEVELOPMENT 

This paper presented the method to migrate the 

fault trees to decision trees, which lays a good 

foundation for using a data mining technique in 

advanced diagnostic systems.  The next step will 

naturally fall to a project to implement data 

mining software for fault detection, prediction, 

and analysis. Such software will use the decision 

trees as an engine inside of the diagnostic system 

application. This engine will be able to gain 

knowledge of fault patterns then recognize faults 

when they reoccur.  



REFERENCE: 

[1] Ramesh K. Rayudu, Sandhya 

Samarasinghe, and Don Kulasiri, "A 

Comparison of Model-based Reasoning 

and Learning Approaches to Power 

Transmission Fault Diagnosis," 2nd New 

Zealand Two-Stream International 

Conference on Artificial Neural 

Networks and Expert Systems (ANNES 

'95),  pp 218, 1995. 

[2] Tariq Assaf and Joanne Bechta Dugan, 

"Automatic generation of diagnostic 

expert systems from fault trees," 

Reliability and Maintainability 

Symposium, January 2003.  

[3]  Zhihua Tang and Joanne Bechta Dugan, 

"Minimal Cut Set and Sequence 

Generation for Dynamic Fault Trees," 

Reliability and Maintainability 

Symposium, January 2004. 

[4]  Joanne Bechta Dugan, “Software system 

analysis using fault trees,” Chapter 15, 

Handbook of Software Reliability 

Engineering, editor MR. Lyu, IEEE 

Computer Society Press, McGraw-Hill 

Publication 1996.  

[5] J. R. Quinlan, Induction of Decision 

Trees, Machine Learning, v.1 n.1, p.81-

106, 1986  

[6]  Ping. Li, Richard. E. Haskell, Darrin. M. 

Hanna, “Optimizing Fuzzy Decision 

Tree by Using Genetic Algorithms,” 

Proceedings of the International 

Conference on Artificial Intelligence, 

June, 2003, Las Vegas, USA 

[7] Olaru, C. and L. Wehenkel, Data 

Mining. IEEE Computer Applications in 

Power, 1999. 12(3): p. 19-25. 

[8]  N. H. Robert and D. F. Haasl, Fault 

Tree Handbook, National Technical 

Information Service, Springfield, VA, 

1981 

[9] Leiguang Gong, Doug Riecken, 

“Constraining Model-based reasoning 

using context,”, IEEE/WIC International 

Conference on Web Intelligence (WI'03), 

pp 507, October 13 - 17, 2003 Halifax, 

Canada  

 


